Search results for "cosmic ray"
showing 10 items of 301 documents
Study of scintillation light collection, production and propagation in a 4 tonne dual-phase LArTPC
2020
The $3 \times 1 \times 1$ m$^3$ demonstrator is a dual phase liquid argon time projection chamber that has recorded cosmic rays events in 2017 at CERN. The light signal in these detectors is crucial to provide precise timing capabilities. The performances of the photon detection system, composed of five PMTs, are discussed. The collected scintillation and electroluminescence light created by passing particles has been studied in various detector conditions. In particular, the scintillation light production and propagation processes have been analyzed and compared to simulations, improving the understanding of some liquid argon properties.
High energy neutrinos from novae in symbiotic binaries: The case of V407 Cygni
2010
Detection of high-energy (>= 100 MeV) gamma rays by the Fermi Large Area Telescope from a nova in the symbiotic binary system V407 Cygni has opened the possibility of high-energy neutrino detection from this type of source. A thermonuclear explosion on the white dwarf surface sets off a nova shell in motion that expands and slows down in a dense surrounding medium provided by the red giant companion. Particles are accelerated in the shocks of the shell and interact with the surrounding medium to produce observed gamma rays. We show that proton-proton interaction, which is most likely responsible for producing gamma rays via neutral pion decay, produces >= 0:1 GeV neutrinos that can be detec…
Measurement of the cosmic-ray energy spectrum above 2.5×1018 eV using the Pierre Auger Observatory
2020
We report a measurement of the energy spectrum of cosmic rays for energies above 2.5×10^18 eV based on 215,030 events recorded with zenith angles below 60°. A key feature of the work is that the estimates of the energies are independent of assumptions about the unknown hadronic physics or of the primary mass composition. The measurement is the most precise made hitherto with the accumulated exposure being so large that the measurements of the flux are dominated by systematic uncertainties except at energies above 5×10^19 eV. The principal conclusions are(1) The flattening of the spectrum near 5×10^18 eV, the so-called "ankle,"is confirmed.(2) The steepening of the spectrum at around 5×10^19…
New high energy γ-ray sources observed by COS B
1977
LOCALISED γ-ray sources contribute to the overall galactic emission; some of these sources have been identified with known astronomical objects1,2, while several unidentified γ-ray sources have also been reported3,4. We describe here a search for γ-ray sources using data from the ESA γ-ray satellite COS B which revealed 10 new unidentified sources. These sources seem to be galactic with typical γ-ray luminosities above 100 MeV in excess of 1035 erg s−1.
Underground cosmic-ray experiment EMMA
2013
EMMA (Experiment with MultiMuon Array) is a new approach to study the composition of cosmic rays at the knee region (1 − 10 PeV). The array will measure the multiplicity and lateral distribution of the high-energy muon component of an air shower and its arrival direction on an event-by-event basis. The array operates in the Pyh¨asalmi Mine, Finland, at a depth of 75 metres (or 210 m.w.e) corresponding to the cut-off energy of approximately 50 GeV for vertical muons. The data recording with a partial array has started and preliminary results of the first test runs are presented. nonPeerReviewed
High energy gamma ray counterparts of astrophysical sources of ultra-high energy cosmic rays
2004
If ultra-high energy cosmic rays (UHECRs) are accelerated at astrophysical point sources, the identification of such sources can be achieved if there is some kind of radiation at observable wavelengths that may be associated with the acceleration and/or propagation processes. No radiation of this type has so far been detected or at least no such connection has been claimed. The process of photopion production during the propagation of UHECRs from the sources to the Earth results in the generation of charged and neutral pions. The neutral (charged) pions in turn decay to gamma quanta and electrons that initiate an electromagnetic cascade in the universal photon background. We calculate the f…
Commissioning the ATLAS silicon microstrip tracker
2009
Abstract The completed SemiConductor Tracker (SCT) has been installed inside ATLAS. Quick tests were performed last year to verify the connectivity of the electrical and optical services. Problems observed with the heaters for the evaporative cooling system have been resolved. This has enabled extended operation of the full detector under realistic conditions. Calibration data has been taken and analyzed to determine the noise performance of the system. In addition, extensive commissioning with cosmic ray events has started. The cosmic muon data has been used to align the detector, to check the timing of the front-end electronics as well as to measure the hit efficiency of modules. The curr…
Monte Carlo study of forward pi(0) production spectra to be measured by the LHCf experiment for the purpose of benchmarking hadron interaction models…
2011
Abstract The LHCf experiment aims to improve knowledge of forward neutral particle production spectra at the LHC energy which is relevant for the interpretation of air shower development of high energy cosmic rays. Two detectors, each composed of a pair of sampling and imaging calorimeters, have been installed at the forward region of IP1 to measure π0 energy spectra above 600 GeV. In this paper, we present a Monte Carlo study of the π0 measurements to be performed with one of the LHCf detectors for proton–proton collisions at s = 14 TeV. In approximately 40 min of operation at luminosity 0.8 × 10 29 cm - 2 s - 1 during the beam commissioning phase of LHC, about 1.5 × 104 π0 events are exp…
Neutrino searches at the Pierre Auger Observatory
2013
Abstract The surface detector array of the Pierre Auger Observatory is sensitive to ultra-high energy neutrinos in the cosmic radiation. Neutrinos can interact in the atmosphere close to ground (down-going) and, for tau neutrinos, through the Earth-skimming mechanism (up-going) where a tau lepton is produced in the Earth crust that can emerge and decay in the atmosphere. Both types of neutrino-induced events produce an inclined particle air shower that can be identified by the presence of a broad time structure of signals in the water-Cherenkov detectors. We discuss the neutrino identification criteria used and present the corresponding limits on the diffuse and point-like source fluxes.
Measurement of the cosmic ray energy spectrum with IceTop-73
2013
Physical review / D 88(4), 042004 (2013). doi:10.1103/PhysRevD.88.042004